
Development/Plasticity/Repair

Layer Acquisition by Cortical GABAergic Interneurons Is
Independent of Reelin Signaling
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Functioning of the cerebral cortex requires the coordinated assembly of circuits involving glutamatergic projection neurons and
GABAergic interneurons. Despite their segregated origin in different regions of the telencephalon, projection neurons and interneurons
born synchronically end up adopting the same cortical layer, suggesting that layer acquisition is highly coordinated for both neuronal
types. The radial migration and laminar arrangement of projection neurons depends on Reelin, a secreted glycoprotein expressed near
the pial surface during embryogenesis. In contrast, the mechanisms controlling layer acquisition by cortical interneurons remain essen-
tially unknown. Here, we have used an ultrasound-guided transplantation approach to analyze the mechanisms underlying the acquisi-
tion of laminar locations by cortical interneurons. We found that layer acquisition by cortical GABAergic interneurons does not directly
depend on Reelin signaling. Moreover, interneurons invade their target layers well after synchronically generated projection neurons
reach their final destination. These results suggest a model in which cues provided by projection neurons guide cortical interneurons to
their appropriate layer, and reveal that, at least for some neuronal types, long-range radial migration does not directly require Reelin.
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Introduction
The function of the cerebral cortex requires the coordinated ac-
tivity of the two main classes of cortical neurons, glutamatergic
projection neurons and GABA containing (GABAergic) inter-
neurons. Recent studies have demonstrated that cortical projec-
tion neurons and interneurons follow mostly different develop-
mental programs. In short, projection neurons originate
throughout the ventricular zone of the pallium and migrate radi-
ally to form the developing cortex. Interneurons, in contrast,
originate in the ventricular zone of the subpallium and migrate
tangentially to the pallium (Corbin et al., 2001; Marı́n and
Rubenstein, 2001). After reaching the pallium, migrating inter-
neurons invade the cortical plate by changing their mode of mi-

gration from tangential to radial (Tanaka et al., 2003; López-
Bendito et al., 2004).

Cell layers within the cortical plate (future cortical layers II–
VI) are established according to an inside-out pattern (Angevine
and Sidman, 1961; Rakic, 1974; Takahashi et al., 1999). Accord-
ingly, projection neurons born simultaneously migrate and stop
migrating roughly at the same time; thus, they all occupy the
same cortical layer. Remarkably, GABAergic interneurons tend
to adopt the same cortical layer as synchronically generated pro-
jection neurons (Miller, 1985; Fairén et al., 1986; Nery et al., 2002;
Valcanis and Tan, 2003), although interneurons must migrate
through much greater distances than projection neurons and
thus require additional time to reach the pallium. In contrast to
the expanding literature on the tangential migration of cortical
interneurons (for review, see Flames and Marı́n, 2005; Métin et
al., 2006), our knowledge of the mechanisms controlling the ac-
quisition of their laminar position is still very limited.

The analysis of cortical lamination has been facilitated by an-
imal models such as the mutant mouse reeler, in which disruption
of the Reelin gene leads to severe layer disorganization in all cor-
tical structures (Caviness, 1982). The function of Reelin, an ex-
tracellular protein expressed by Cajal-Retzius cells (D’Arcangelo
et al., 1995; Ogawa et al., 1995; Soriano and Del Rio, 2005), is
mediated by a signaling cascade that includes two receptors, the
very low-density lipoprotein receptor (VLDLR) and the apoli-
poprotein receptor 2 (ApoER2 or Lrp8), as well as the intracellu-
lar adaptor protein Dab1 (D’Arcangelo et al., 1999; Hiesberger et
al., 1999; Howell et al., 1999, 2000). Mice lacking Dab1 or both
VLDLR and Lrp8 have lamination defects that are indistinguish-
able from those found in reeler, suggesting that they all participate
in the same genetic pathway controlling laminar positioning
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(Howell et al., 1997; Rice and Curran, 1999; Trommsdorff et al.,
1999), with Dab1 acting as a cell-autonomous requirement for
Reelin signaling (Hammond et al., 2001; Sanada et al., 2004; Ol-
son et al., 2006).

The differential origin of cortical projection neurons and in-
terneurons has raised important questions regarding the mecha-
nism used for their assembly in the cerebral cortex. It has been
proposed that projection neurons may wait for the arrival of their
interneuron counterparts to simultaneously invade the cortical
plate, a coherent mechanism to explain how synchronically born
projection neurons and interneurons end up in the same layer
(Kriegstein and Noctor, 2004). Implicit to this model is the idea
that both types of neurons rely on Reelin signaling to adopt their
laminar position, although the role of this pathway in the migra-
tion of cortical interneurons remains to be fully elucidated.

Here, we investigated the function of Reelin signaling in con-
trolling the migration of cortical GABAergic interneurons. Our
results indicate that Reelin is neither required for tangential mi-
gration of cortical interneurons from the subpallium to the pal-
lium, nor is it directly implicated in their laminar position, sug-
gesting instead that projection neurons may contribute to the
final arrangement of interneurons in the cerebral cortex.

Materials and Methods
Animals. Wild-type, green fluorescent protein (GFP)-expressing trans-
genic mice (Hadjantonakis et al., 1998), Dlx5/6 Cre-IRES-EGFP transgenic
mice (Stenman et al., 2003), and Dab1 mutant mice (Howell et al., 1997),
maintained in a CD1 background, were used in this study. The day of
vaginal plug was considered embryonic day 0.5 (E0.5). Animals were kept
at the Instituto de Neurociencias de Alicante under Spanish and Euro-
pean Union regulation.

Histology. Mice were anesthetized with an overdose of sodium pento-
barbital and transcardially perfused with 4% paraformaldehyde (PFA).
Postnatal brains were removed, fixed for 3 h at 4°C, and cryoprotected in
30% sucrose in PBS. Brains were then cut frozen transversally on a sliding
microtome at 40 �m and stored at �20°C in ethylene glycol until used.
Embryonic brains were fixed overnight in 4% PFA, embedded in Tissue-
Tek OCT compound (Sakura Finetek Europe, Zoeterwoude, The Neth-
erlands), and sectioned at 20 �m in the cryostat. The following antibod-
ies were used: chicken anti-GFP (1:1000; Aves Labs, Tigard, OR), rabbit
anti-GFP (1:2000; Invitrogen, Eugene, OR), rabbit anti-GABA (1:2000;
Sigma, St. Louis, MO), rat anti-bromodeoxyuridine (BrdU; 1:100; Accu-
rate Chemical, Westbury, New York), rabbit anti-calbindin (1:5000;
Swant, Bellinzona, Switzerland), rat anti-calretinin (1:3000; Swant), rab-
bit anti-nitric oxide synthase (NOS; 1:1000; ImmunoStar, Hudson, WI),
rabbit anti-parvalbumin (1:5000; Swant), rabbit anti-Lhx6 (1:100; kindly
provided by V. Pachnis, National Institute for Medical Research, Lon-
don, UK), rabbit anti-Dab1 (1:750; Chemicon, Temecula, CA). The fol-
lowing secondary antibodies were used: goat anti-rabbit 488, goat anti-rat
546, goat anti-rabbit biotin, donkey anti-rabbit 594, rabbit anti-chicken
488 (all from Invitrogen), and cyanine 3-conjugated donkey anti-rat
(Jackson ImmunoResearch, West Grove, PA). For BrdU double staining,
sections were first processed for the GABA, Lhx6, or GFP immunohisto-
chemistry, fixed in 4% PFA for 50 min, and then processed for BrdU
staining.

For in situ hybridization, E13.5 brains were fixed overnight in 4% PFA,
cryoprotected in 30% sucrose, embedded in OCT compound and stored
frozen at �80°C. Twenty-micrometer coronal cryostat sections were hy-
bridized as described previously (Flames et al., 2004). Images were ob-
tained using a cooled-CCD camera (DC500; Leica, Nussloch, Germany).

Primary cultures. The cortices of six E17.5 Dlx5/6 Cre-IRES-EGFP em-
bryos were dissected and incubated with Tripsine-EDTA for 20 min at
37°C. Cells were then mechanically dissociated in L-15 medium contain-
ing DNase I and centrifuged (5 min, 1000 rpm). Cells were resuspended
with Neurobasal medium and counted in a Neubauer chamber. A total of
10 5 cells were plated on poly-lysine-coated glass coverslips. After 24 h,

cells were fixed in 4% PFA for 30 min and processed for GFP and Dab1
immunohistochemistry.

Donor cells. The medial ganglionic eminence (MGE) from 8 to 13
E12.5 or E15.5 wild-type, Dab1 �/�, or GFP-expressing embryos were
dissected under a stereomicroscope. Explants were washed in 0.5 ml of
L-15 medium (Invitrogen) containing DNase I (100 �g/ml), and cells
were mechanically dissociated by repeated pipetting (20 –30 times)
through a 200 �l plastic pipette tip. Dissociated cells were then pelleted
by centrifugation (5 min, 1000 rpm), resuspended in 6 �l of L-15 me-
dium with DNase I, and kept on ice until injection. All donor pregnant
females were injected 12 h before dissection with BrdU (40 mg/kg).
Dab1 �/� embryos were genotyped as described previously (Howell et al.,
1997).

In utero transplantation. High-density cell suspensions (�25,000 cells/
�l) were front loaded into beveled glass micropipettes (�50 �m diame-
ter) prefilled with mineral oil and mounted in a pressure microinjector
(VisualSonics, Toronto, Ontario, Canada). Recipient pregnant females
(E12.5 or E15.5) were anesthetized with sodium pentobarbital (0.625
mg/10 g, i.p.), their uterine horns exposed, and mounted under an ultra-
sound microscope (VisualSonics). The tip of the micropipette was in-
serted into the MGE under real-time ultrasound guidance and 36 –54 nl
of cell suspension was injected. The position of the embryo and the
path of the micropipette insertion were recorded for each embryo at
the time of the injection. Embryos in which we detected leakage to the
lateral ventricle were excluded from the analysis. Nearly 80% of the
injected embryos were born and survived, of which only approximately
half contained grafted cells. This is likely attributable to the uneven dis-
tribution of cells within the micropipette. Three to four successfully
transplanted animals were analyzed for each experimental condition.

Quantification. For the analysis of GABA/BrdU� cells, images ob-
tained in a confocal microscope (Leica DM-R/TCS-SL) were coupled
using Canvas X (ACD Systems, Miami, FL) software. The number of
double-positive cells was counted from a 375-�m-wide profile of the
lateral ventricular wall in the somatosensory cortex at two different
bregma levels (0.02, �0.46) from four different brains. The cortex (layers
1– 6) was analyzed with a grid of 10 equal horizontal bins. In controls, bin
1 roughly corresponds to the marginal zone, and bin 10 corresponds to
the lower end of layer 6. For the quantification of GFP/BrdU� and
BrdU� neurons in transplanted animals, all cells located in motor, so-
matosensory, and visual cortices from bregma levels �1.42 to �3.40
were plotted and assigned to different layers of the cortex using photo-
montages with fluorescence nuclear staining as a cytoarchitectonic refer-
ence. For the quantification of Lhx6/BrdU� and BrdU� cells in E16.5
and neonate mice, confocal images coupled using Canvas software were
analyzed. Cells were counted from a 375-�m-wide profile of the dorsal
cortex at intermediate rostrocaudal levels from four different animals.

To examine differences across populations, data were statistically an-
alyzed using � 2 tests. For those distributions of cells in which statistical
differences were found for the whole population, each category (layers or
bins, depending on the experiment) was then independently analyzed
using two by two contingency tables to assign statistical differences to
specific categories.

Results
Layer acquisition by cortical interneurons is altered in the
absence of Reelin signaling
The function of Reelin on cortical neuronal migration has been
classically studied with a unitary perspective, i.e., mutations af-
fecting Reelin signaling would affect equally both projection neu-
rons and interneurons (Rice and Curran, 2001). The discovery
that cortical projection neurons and interneurons of the cerebral
cortex follow different developmental programs (Anderson et al.,
1997), however, has provided a novel framework to understand
the role of Reelin on cortical neuronal migration. In this new
context, we examined the laminar distribution of GABAergic
neurons in the cortex of control and Dab1 mutant mice at post-
natal day 14 (P14) (Fig. 1). To identify different cohorts of
GABAergic neurons, we performed BrdU birth dating at two
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embryonic days, E12 and E15. In control
mice, GABAergic neurons born at E12
were found in deep layers of the P14 cor-
tex, whereas those born at E15 preferen-
tially occupied superficial layers (n � 3)
(Fig. 1A,C,E,F). In contrast, the laminar
distribution of GABAergic neurons was
abnormal in Dab1 mutant mice. Thus,
GABAergic neurons born at E12 were
found preferentially in superficial layers of
the P14 cortex, whereas interneurons born
at E15 preferentially occupied deep layers
(n � 3) (Fig. 1B,D,E,F). These results es-
sentially recapitulate those reported for
reeler mice (Hevner et al., 2004; Yabut et
al., 2006) and are not attributable to differ-
ences in the total number of GABAergic
interneurons found in the cortex of con-
trol and Dab1 mutant mice [E12 interneu-
rons: control, 24.30 � 3.77 cells/mm 2 (av-
erage � SEM); mutant, 19.62 � 2.94, p �
0.543, n � 3; for E15 interneurons: con-
trol, 42.09 � 5.56; mutant, 44.87 � 8.35,
p � 0.629, n � 3].

Analysis of specific neurochemical
markers also revealed a disorganization of
the laminar distribution of distinct inter-
neuron populations. For example,
GABAergic interneurons that express the
enzyme NOS were preferentially found in
deep layers of the somatosensory cortex at
P14 in control mice but were frequently
present in superficial layers in Dab1 mu-
tant mice (supplemental Fig. S1, available
at www.jneurosci.org as supplemental ma-
terial). Conversely, calretinin-expressing
interneurons, which were most commonly
found in superficial layers of the cortex in
control mice, were abundantly distributed
through deep layers of the cortex in Dab1
mutant mice (supplemental Fig. S1, avail-
able at www.jneurosci.org as supplemental
material). Moreover, reeler mice exhibited
a phenotype identical to that of Dab1
mutants (supplemental Fig. S1, available
at www.jneurosci.org as supplemental ma-
terial). Together, these results demon-
strate that the laminar arrangement of
GABAergic interneurons is severely im-
paired in the postnatal cortex of mouse
mutants in which Reelin signaling is
disrupted.

Loss of Reelin signaling does not impair
tangential migration of
cortical interneurons
The proper allocation of GABAergic inter-
neurons in the cortex requires two differ-
ent phases of migration. First, interneu-
rons migrate tangentially from the subpallium to the pallium.
Subsequently, interneurons migrate radially from the marginal
zone or the subventricular zone into the cortical plate, in which
they finally adopt a defined laminar position. We therefore rea-

soned that the atypical location of interneurons in the cortex of
reeler and Dab1 mutants could be a direct consequence of abnor-
mal tangential migration of these cells from the subpallium to the
pallium. To test this hypothesis, we analyzed the pattern of inter-

Figure 1. The laminar position of cortical interneurons is inverted in Dab1 mutant mice. A–D, Confocal microscopic reconstruc-
tions of the cerebral cortex of wild-type (A and C) and Dab1 mutant (B and D) mice stained for BrdU (red) and GABA (green) after
injection of BrdU at E12 (A and B) or E15 (C and D). A, B, Early-born cortical interneurons (BrdU�/GABA�) acquire deep cortical
positions in control mice (arrows), whereas they occupy superficial positions in Dab1 mutants (open arrowheads). C, D, Late-born
interneurons (BrdU�/GABA�) populate mostly superficial layers (arrows) in wild-type mice, although a few also occupy deep
layers (solid arrowhead). In Dab1 mutants, the majority of late-born interneurons occupy deep positions (open arrowheads),
although some populate superficial layers (arrows). Numbers identify bins for quantification. E, F, Binned quantifications of the
distribution of E12 (E) and E15 (F ) interneurons in the cerebral cortex of wild-type (black bars) and Dab1 mutant (gray bars) mice
(average � SEM). The width of the cortex proper (layers 1– 6) was divided into 10 equal bins for laminar distribution analysis,
with bin 1 at the top (marginal zone) and bin 10 at the bottom (white matter). Scale bar, 100 �m.
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neuron tangential migration during embryonic stages in reeler
and Dab1 mutants. Analysis of the expression of multiple mark-
ers on tangentially migrating interneurons in the embryonic tel-
encephalon, such as Lhx6, Dlx2, and Gad67, did not reveal any
prominent differences, both in number and routes of migration,
between controls and Dab1 mutants (n � 3) (Fig. S2, available at
www.jneurosci.org as supplemental material, and data not
shown). Identical results were obtained when comparing control
and reeler mutant embryos (supplemental Fig. S3, available at
www.jneurosci.org as supplemental material, and data not
shown). In conclusion, Reelin signaling does not seem to influ-
ence the tangential migration of interneurons from the subpal-
lium to the cortex.

Dab1 is expressed by GABAergic interneurons in the cortex
Because GABAergic interneurons reach the cortex in the absence
of Reelin signaling, we reasoned that the abnormal lamination of
cortical interneurons observed in reeler and Dab1 mutants was
likely caused by a defect in their radial translocation into the
cortical plate. High levels of Dab1, VLDLR, and ApoER2 expres-
sion have been reported in the embryonic cortex as migrating
neurons invade the cortical plate (Rice et al., 1998; D’Arcangelo et
al., 1999; Hiesberger et al., 1999), consistent with the proposed
role of Reelin/Dab1 signaling in radial migration. However, it is
not known whether GABAergic interneurons also express Dab1
at the stages at which they begin to enter the cortical plate. To
answer this question, we took advantage of a strain of transgenic
mice in which a bicistronic cassette containing CRE recombinase
and GFP is expressed under the control of a Dlx5/6 enhancer
element (Stenman et al., 2003), which marks virtually every
GABAergic interneuron in the mouse cerebral cortex (Stühmer et
al., 2002). Immunohistochemical analysis of dissociated cells ob-
tained from the cortex of Dlx5/6 Cre-IRES-EGFP embryos at E17.5,
an age at which large numbers of GABAergic interneurons invade
the cortical plate (Tanaka et al., 2003; López-Bendito et al., 2004),
revealed that every GFP-positive (i.e., GABAergic) cell in the cor-
tex at this stage expressed Dab1 (100% of 59 GFP� counted cells)
(Fig. 2). As expected, the vast majority of cells obtained from the
E17.5 cortex that expressed Dab1 did not stain for GFP (91.29%
of 678 Dab1� counted cells), reflecting the fact that projection
neurons essentially outnumber GABAergic interneurons in the
cortex. Thus, cortical interneurons express Dab1 as laminar for-
mation proceeds, thereby reinforcing the view that they may re-
spond to Reelin during this process.

Transplantation of MGE-derived cells in utero recapitulates
the acquisition of laminar positions in vivo
Over the past few years, the analysis of interneuron tangential
migration has greatly benefited from the development of an or-

ganotypic slice preparation that roughly recapitulates, both in
time and space, the movement of cortical interneurons from the
basal telencephalon to the cortex (Anderson et al., 1997). The
analysis of layer acquisition by cortical interneurons is, however,
unfeasible using in vitro techniques, primarily because it occurs
through a much longer period of time. To overcome this prob-
lem, we used a recently developed ultrasound-guided micro-
transplantation technique (Olsson et al., 1997), which allows
long-term in vivo fate-mapping analysis of transplanted cells.

To validate this method for the analysis of layer acquisition by
cortical interneurons, we performed a series of experiments in-
tended to replicate previous birth-dating studies on GABAergic
interneurons. GABAergic interneurons tend to adopt the same
cortical layer as projection neurons born roughly at the same
time, i.e., early-born interneurons (e.g., E12) tend to occupy
deep, infragranular layers of the cortex, whereas late-born inter-
neurons (e.g., E15) have a preference for superficial, supragranu-
lar layers (Miller, 1985; Fairén et al., 1986; Peduzzi, 1988). In this
context, we performed homotopic and isochronic transplants of
cells derived from the MGE of E12.5 or E15.5 GFP-expressing
embryos and analyzed the final distribution of transplanted cells
in the neocortex of P14 host animals (Fig. 3A). We chose the
MGE for our transplantation assays because it is the primary
source of cortical GABAergic interneurons in the basal telen-
cephalon (Lavdas et al., 1999; Sussel et al., 1999; Wichterle et al.,
1999, 2001; Butt et al., 2005). Donor pregnant females were BrdU
injected 12 h before dissection of the MGE to ensure that the
analysis was performed only on transplanted cells that divided
last in the donor environment (Fig. 3A). Remarkably, GFP-
expressing MGE-derived cells labeled with BrdU at E12 and
transplanted at E12.5 into the MGE of E12.5 host embryos were
found to occupy deep layers of the cortex in P14 host animals
(n � 3, a total of 159 counted cells) (Fig. 3B–D and supplemental
Fig. S4, available at www.jneurosci.org as supplemental mate-
rial), whereas GFP-expressing MGE-derived cells labeled with
BrdU at E15 and transplanted at E15.5 into the MGE of E15.5
host embryos consistently occupied upper layers of the cortex
(n � 4, a total of 949 counted cells) (Fig. 3E–G and supplemental
Fig. S4, available at www.jneurosci.org as supplemental mate-
rial). Thus, our experiments showed that in utero homotopic
transplantation of MGE-derived cells using ultrasound-guided
transplantation faithfully recapitulates the acquisition of laminar
fates by cortical GABAergic interneurons in vivo, validating this
approach for the analysis of the mechanisms controlling this
process.

Layer acquisition of most cortical interneurons is determined
at birth
According to the current view on Reelin function during cortical
lamination, cohorts of newly generated neurons migrate radially
through the developing intermediate zone and cortical plate until
they reach the maximum concentration of Reelin, just below the
marginal zone, at which they stop and differentiate. To test this
hypothesis in relation to the development of cortical interneu-
rons, we designed experiments in which two different popula-
tions of MGE-derived cells were simultaneously transplanted
into a common host environment (Fig. 4A). In a first series of
experiments, we simultaneously transplanted GFP-expressing
MGE-derived cells labeled with BrdU at E12 and MGE-derived
cells labeled with BrdU at E15 into the MGE of E15.5 host em-
bryos (Fig. 4A). As expected from the initial isochronic trans-
plants, MGE-derived cells labeled with BrdU at E15 were found
to primarily occupy upper layers of the cortex in P14 host animals

Figure 2. Expression of Dab1 in cortical interneurons during corticogenesis. Images of dis-
sociated cultures obtained from E17.5 cortices of Dlx5/6 Cre-IRES-GFP embryos showing nuclear
staining [4�,6�-diamidino-2-phenylindole dihydrochloride (DAPI)] and immunohistochemistry
for GFP (A and C) and Dab1 (B and C) are shown. Scale bar, 20 �m.
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(n � 4, a total of 1289 counted cells) (Fig.
4B–D). Remarkably, GFP-expressing
MGE-derived cells labeled with BrdU at
E12 were found to occupy deep layers of
the cortex despite having been trans-
planted into an environment older than
that in which they were born (Fig. 4B–D).
This suggests that most early-born inter-
neurons are able to retain their laminar
fate when transplanted into an older envi-
ronment. Nevertheless, �20% of the
early-born interneurons were found in
upper cortical layers (layers II–III) (Fig.
4D), suggesting that at least some inter-
neurons changed their laminar fate and
accommodated to the new environment in
which they were transplanted despite be-
coming postmitotic in a younger
environment.

In a second series of experiments,
GFP-expressing MGE-derived cells la-
beled with BrdU at E12 and MGE-
derived cells labeled with BrdU at E15
were now simultaneously transplanted
into the MGE of E12.5 host embryos
(Fig. 4 A). As expected from the isoch-
ronic transplants, GFP-expressing
MGE-derived cells labeled with BrdU at
E12 were found to occupy deep layers of
the cortex in P14 host animals (n � 4, a
total of 421 counted cells) (Fig. 4 E–G).
In the case of late-born interneurons
(E15), �40% of the cells maintained
their laminar fate and occupied upper
layers of the cortex (Fig. 4 E–G). How-
ever, a large percentage of MGE-derived
cells labeled with BrdU at E15 were no
longer committed to upper layers of the
cortex and instead were located in deep
layers (layers V–VI) (Fig. 4G). This shift
in the distribution of cells born at E15
indicates that, after transplantation in a
younger environment, many late-born interneurons have
changed their laminar fates and behaved like early-born neu-
rons. In summary, most interneurons tend to maintain the
laminar fate they acquire at the time of birth, especially early-
born interneurons, but a proportion is also susceptible to sig-
nals found in the host environment.

Cortical interneurons born at different times can
simultaneously invade the cortical plate
The previous experiments demonstrate that simultaneously
transplanted populations of interneurons born at different
stages can, at least to a large extent, segregate into different
layers of the postnatal cortex (Fig. 4 D). One important con-
clusion that can be inferred from this observation is that these
results are mostly incompatible with the classical model in
which Reelin signaling dictates the laminar position of cortical
neurons. Thus, either the different cohorts of interneurons
respond differently to the same concentration of Reelin, or
this signaling system does not directly contribute to the lami-
nation of cortical interneurons. One alternative possibility
would be that, despite being simultaneously transplanted,

both populations may reach the cortical plate at different
times and therefore may still respond to Reelin according to
the common rule, i.e., they migrate until they reach the max-
imum concentration of Reelin. To evaluate this possibility, we
performed another series of mixed transplants. As before, we
transplanted GFP-expressing MGE-derived cells labeled with
BrdU at E12 and MGE-derived cells labeled with BrdU at E15
into the MGE of E15.5 host embryos. In this case, however, the
distribution of early- and late-born interneurons was evalu-
ated 2 d after transplantation (Fig. 5A). At this early stage of
migration, a large number of neurons were still confined to the
cortical subventricular zone, through which most interneu-
rons migrate tangentially toward the cortex (Fig. 5 B, D). Nev-
ertheless, many transplanted neurons were also found in the
intermediate zone of the cortex or even in the developing
cortical plate (Fig. 5B–D). Remarkably, both early- and late-
born cells were present in the different layers at equivalent
proportions (n � 3, a total of 233 counted cells, p � 0.2, � 2

test) (Fig. 5D), demonstrating that interneurons born at dif-
ferent dates and transplanted simultaneously can initiate ra-
dial migration and invade the cortical plate at the same time.

Figure 3. Cortical interneurons transplanted homotypically and isochronically in utero retain their program for laminar spec-
ificity. A, Schematic diagram of the experimental design. GFP� donor pregnant mice received a single injection of BrdU, and 12 h
later the MGE was dissected from their embryos and dissociated. GFP�donor MGE cells [also BrdU� (yellow), or BrdU� (green)]
were then injected into the MGE of age-matched host embryos. Host embryos were allowed to be born and analyzed at P14. B, E,
Coronal sections through the somatosensory cortex of P14 mice showing the distribution of E12.5 (B) and E15.5 (E) GFP�
MGE-derived cells after nuclear staining [4�,6�-diamidino-2-phenylindole dihydrochloride (DAPI)] and immunohistochemistry
for BrdU (red) and GFP (green). C, F, Magnifications of the areas boxed in B and E, respectively. Arrows show BrdU�/GFP� cells;
the open arrowhead indicates an example of BrdU�/GFP� cell not included in the analysis. D, G, Quantification of the distribu-
tion of isochronically transplanted E12.5 (D) and E15.5 (G) interneurons in the P14 cortex (average � SEM). Scale bars: (in B) B,
E, 300 �m; (in C) C, F, 50 �m.
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Dab1-deficient cortical interneurons adopt a normal laminar
fate in a wild-type environment
The previous experiments are in agreement with the hypothesis
that interneurons may find their laminar position in response to
cues other than Reelin. To unequivocally test this hypothesis, we
simultaneously transplanted GFP-expressing MGE-derived cells
labeled with BrdU at E12 and Dab1�/� MGE-derived cells labeled
with BrdU at E12 into the MGE of E12.5 wild-type embryos (Fig.
6A). We reasoned that because Dab1 mutant MGE-derived cells
could not respond to Reelin, their distribution in a wild-type
cortex would reveal whether interneurons directly required this
signaling system to acquire their laminar position. As expected
from our previous experiments, wild-type transplanted cells
(GFP-expressing MGE-derived cells labeled with BrdU at E12,
the internal control) were mostly confined to deep layers of the
P14 cortex (n � 2, a total of 177 counted cells) (Fig. 6B–D).

Remarkably, Dab1�/� MGE-derived cells
displayed an equivalent distribution in the
postnatal cortex (n � 2, a total of 59
counted cells, p � 0.3, � 2 test) (Fig.
6B–D).

The ability of Dab1 mutant interneu-
rons to adopt a normal laminar fate in a
wild-type environment was not exclusive
of early-born cells, because similar results
were obtained in equivalent experiments
in which we simultaneously transplanted
GFP-expressing MGE-derived cells la-
beled with BrdU at E15 and Dab1�/�

MGE-derived cells labeled with BrdU at
E15. As expected, wild-type cells were
found primarily in upper layers of the P14
cortex, with a smaller fraction spread
through deeper layers (n � 3, a total of 251
counted cells) (Fig. 6E–G), and Dab1�/�

MGE-derived cells displayed an equivalent
distribution in the postnatal cortex (n � 3,
a total of 428 counted cells, p � 0.1, � 2

test) (Fig. 6E–G). These experiments dem-
onstrate that interneurons do not cell-
autonomously require Reelin signaling to
adopt their proper laminar position in the
developing cortex.

Projection neurons invade the cortical
plate before synchronically
generated interneurons
The results of the previous experiments are
incompatible with a model in which Reelin
plays a direct role in the laminar position-
ing of cortical interneurons, and yet corti-
cal GABAergic interneurons are abnor-
mally located in the postnatal cortex of
mice lacking Reelin signaling (Fig. 1 and
supplemental Fig. S1, available at www.j-
neurosci.org as supplemental material)
(Hevner et al., 2004). An alternative possi-
bility is that interneurons may respond to
information provided by cortical projec-
tion neurons as these settle in the develop-
ing cortical plate. We reasoned that if in-
terneurons were to follow information
presented in the cortical plate by their glu-

tamatergic counterparts, it would be necessary that they invade
the corresponding layer of the cortex after their companion pro-
jection neurons were already in place. To test this hypothesis, we
performed experiments aimed to reveal the relative distribution
of isochronically generated projection neurons and interneurons
a few days after their birth. In a first series of experiments, we
injected pregnant females with BrdU at E12 and killed their prog-
eny at E16.5. Double-labeling immunohistochemistry for BrdU
and Lhx6, a marker of cortical interneurons derived from the
MGE (Lavdas et al., 1999), revealed that the distribution of pro-
jection neurons (BrdU�/Lhx6�) and MGE-derived interneu-
rons (BrdU�/Lhx6�) in the cortex at birth was significantly
different (n � 8, a total of 3233 counted cells, p � 0.001, � 2 test)
(Fig. 7A–H). At this stage, most BrdU�/Lhx6� cells were lo-
cated in the cortical plate (Fig. 7A,D,F). Remarkably, very few
BrdU�/Lhx6� cells were found within the cortical plate at the

Figure 4. Cortical interneurons adopt multiple laminar fates after heterochronic transplantation. A, Schematic diagram of the
experimental design. GFP� donor pregnant mice received a single injection of BrdU at E12, and wild-type donor pregnant mice
received a single injection of BrdU at E15. Twelve hours after BrdU injection, the MGE was dissected from embryos and dissociated.
Pooled donor MGE cells were then injected into the MGE of either E12.5 or E15.5 host embryos. Host embryos were allowed to be
born and analyzed at P14. B, C, Coronal section through the somatosensory cortex of a transplanted P14 mouse showing the
distribution of E12.5 (BrdU�/GFP�) and E15.5 (BrdU�/GFP�) MGE-derived cells after nuclear staining [4�,6�-diamidino-2-
phenylindole dihydrochloride (DAPI)] and immunohistochemistry for BrdU (red) and GFP (green). Arrows point to a BrdU�/
GFP� cell; open arrowheads indicate BrdU�/GFP� cells. D, Quantification of the distribution of heterochronically transplanted
E12.5 (yellow) and isochronically transplanted E15.5 (red) interneurons in the P14 cortex (average � SEM). E, F, Coronal section
through the somatosensory cortex of a transplanted P14 mouse showing the distribution of E12.5 (BrdU�/GFP�) and E15.5
(BrdU�/GFP�) MGE-derived cells after nuclear staining (DAPI) and immunohistochemistry for BrdU (red) and GFP (green).
Arrows point to BrdU�/GFP� cells; open arrowheads indicate BrdU�/GFP� cells. G, Quantification of the distribution of
isochronically transplanted E12.5 (yellow) and heterochronically transplanted E15.5 (red) interneurons in the P14 cortex (aver-
age � SEM). Scale bars: B, C, 100 �m; E, F, 200 �m.
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same stage (Fig. 7D,F). Instead, most
BrdU�/Lhx6� cells resided in the marginal
zone or, to a minor extent, in the cortical
subventricular zone (Fig. 7B,C,E,F). In a
second series of experiments, we injected
pregnant females with BrdU at E15 and
killed their progeny at P0. Double-labeling
immunohistochemistry for BrdU and Lhx6
revealed that the distribution of projection
neurons (BrdU�/Lhx6�) and MGE-
derived interneurons (BrdU�/Lhx6�) in
the cortex at birth was also significantly dif-
ferent (n�4, a total of 953 counted cells, p�
0.001, �2 test) (Fig. 7G–L). At this stage,
most BrdU�/Lhx6� cells were located in
the upper cortical plate (Fig. 7G,J,L). In con-
trast, very few BrdU�/Lhx6� cells born at
E15 were found within the cortical plate at
P0 (Fig. 7J,L). Instead, most BrdU�/Lhx6�
cells resided in the marginal zone or the cor-
tical subventricular zone (Fig. 7H,I,K,L).
Because synchronically generated projection
neurons and interneurons end up occupying
the same layer in the cortex (Miller, 1985;
Fairén et al., 1986), these experiments dem-
onstrate that MGE-derived GABAergic in-
terneurons invade their corresponding layer
in the cortex well after their glutamatergic
counterparts are already in their final
position.

Wild-type cortical interneurons fail to
adopt a normal laminar position in the
Dab1 mutant cortex
Our previous results showed that interneurons invade the corti-
cal plate well after synchronically generated projection neurons,
suggesting that projection neurons may somehow contribute to
the final positioning. If this were the case, wild-type interneurons
should fail to adopt a normal laminar position when transplanted
into a Dab1 mutant environment, because the laminar distribu-
tion of projection neurons is severely compromised in these mice.
To test this hypothesis, we transplanted GFP-expressing MGE-
derived cells labeled with BrdU at E15 into the MGE of E15.5
Dab1�/� embryos (Fig. 8A). In addition, to label the distribution
of all neurons born at E15 in the Dab1�/� embryos, host mothers
also received an injection of BrdU at E15, 12 h before transplan-
tation (Fig. 8A). As expected from our previous experiments (Fig.
3), wild-type interneurons born on approximately E15.5 (GFP�/
BrdU�) and transplanted into E15.5 wild-type host embryos
were primarily located in upper layers of the P14 cortex (Fig.
8C,D). In contrast, the distribution of wild-type interneurons
born at E15.5 (GFP�/BrdU�) and transplanted into E15.5
Dab1�/� embryos was significantly different from controls (n �
2, a total of 142 counted cells, p � 0.001, � 2 test) (Fig. 8F,G), with
cells abnormally distributed throughout the cortex. Thus, wild-
type cortical interneurons fail to adopt a normal laminar position
in the Dab1 mutant cortex.

Analysis of the relative distribution of transplanted interneu-
rons in relation to isochronically generated host neurons in both
wild-type and Dab1 mutants shed further light on the possible
mechanism underlying the laminar distribution of cortical inter-
neurons. As expected from early birth-dating studies (Miller,
1985; Fairén et al., 1986; Peduzzi, 1988), the distribution of E15.5

wild-type interneurons (GFP�/BrdU�) transplanted into the
wild-type cortex tends to follow the distribution of E15.5 host
neurons (GFP�/BrdU�; mostly projection neurons but also in-
cludes host-derived interneurons) (Fig. 8H). Most notably, the
distribution of E15.5 wild-type interneurons (GFP�/BrdU�)
transplanted into the Dab1 mutant cortex also perfectly matches
the distribution of E15.5 Dab1 mutant host neurons (GFP�/
BrdU�; p � 0.3, � 2 test) (Fig. 8 I), demonstrating that the final
allocation of interneurons highly correlates with the distribution
of their projection neuron counterparts.

Discussion
The requirement of the Reelin/Dab1 signaling pathway in radial
migration and lamination of the cerebral cortex is a firmly estab-
lished concept in the field. However, whether it directly influ-
ences both projection neurons and interneurons is still a matter
of debate. Here we have adapted an ultrasound-guided micro-
transplantation technique (Olsson et al., 1997) to perform in vivo
long-term fate-mapping analysis of cortical interneurons. Using
this approach, we have studied cell-autonomous and non-cell-
autonomous determinants governing the acquisition of laminar
positions by cortical interneurons. Our results indicate that Ree-
lin is neither required for tangential migration, nor is it directly
implicated in the acquisition of particular laminar positions by
cortical interneurons. Instead, our experiments suggest that this
process may depend on the interaction between projection neu-
rons and cortical interneurons, leading to a new model in which
already settled projection neurons provide positional informa-
tion for their inhibitory counterparts.

Figure 5. Interneurons born at different times of development invade the cortex synchronically after pooled transplantation. A,
Schematicdiagramoftheexperimentaldesign.GFP�donorpregnantmicereceivedasingleinjectionofBrdUatE12,andwild-typedonor
pregnant mice received a single injection of BrdU at E15. Twelve hours after BrdU injection, the MGE was dissected from embryos and
dissociated. Pooled donor MGE cells were then injected into the MGE of E15.5 host embryos. Host embryos were analyzed at E17.5. B,
Coronal sections through the somatosensory cortex of a transplanted E17.5 embryo showing the distribution of E12.5 (BrdU�/GFP�)
and E15.5 (BrdU�/GFP�) MGE-derived cells after nuclear staining [4�,6�-diamidino-2-phenylindole dihydrochloride (DAPI)] and im-
munohistochemistry for BrdU (red) and GFP (green). C, Magnification of the area boxed in B. The arrow points to a BrdU�/GFP� cell;
open arrowheads indicate BrdU�/GFP�cells. D, Quantification of the distribution ofheterochronically transplanted E12.5 (yellow)
and isochronically transplanted E15.5 (red) interneurons in the E17.5 cortex (average � SEM). CP, Cortical plate; IZ,
intermediate zone; MZ, marginal zone; SVZ, subventricular zone. Scale bars: B, 100 �m; C, 50 �m.
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The tangential migration of cortical interneurons does not
require Reelin signaling
The abnormal laminar distribution of GABAergic interneurons in
the neocortex of reeler and Dab1 mutants could be attributable to
multiple causes. Among them, defects in the tangential migration of
cortical interneurons could influence their final distribution in the
neocortex. However, analysis of the routes and number of migrating
neurons in reeler and Dab1 mutant embryos did not reveal major
differences with control mice. These results are in agreement with
the observation that the number of GABAergic interneurons is nor-
mal in reeler neonates (Hevner et al., 2004), reinforcing the view that
Reelin/Dab1 signaling does not influence the tangential migration of
cortical interneurons. This conclusion contradicts previous results
in which a reduction in the number of cortical interneurons in neo-
natal reeler Orleans mutants has been reported (Morante-Oria et al.,
2003). It should be noted, however, that the Orleans allele exhibits a

deletion of the last 205 residues of Reelin, a
region required for the secretion of the pro-
tein (D’Arcangelo et al., 1997; de Bergeyck et
al., 1997). Because interneurons also express
Reelin as they settle in the cortex (Alcántara
et al., 1998), it is conceivable that the accu-
mulation of a truncated Reelin protein in
these cells may abnormally affect interneu-
rons in reeler Orleans mutants.

Acquisition of laminar fates by
cortical interneurons
The analysis of the mechanisms control-
ling the acquisition of laminar identities by
cortical GABAergic interneurons has been
constrained because of methodological
limitations. In the case of projection neu-
rons, the development of new transplanta-
tion paradigms by McConnell and col-
leagues during the late 1980s and 1990s led
to a series of studies that constituted a ma-
jor step forward in our understanding of
cortical lamination (McConnell, 1988).
Two major conclusions were obtained
from those studies: (1) the laminar iden-
tity of cortical projection neurons is deter-
mined early in the cell cycle of their pro-
genitors and depends on environmental
cues encountered just before mitosis (Mc-
Connell and Kaznowski, 1991); and (2)
there is a progressive temporal restriction
in the potential of cortical progenitors to
produce deep layer projection neurons
(Frantz and McConnell, 1996).

The remote origin of cortical interneu-
rons in the subpallium has greatly limited
the application of in vitro transplantation
paradigms to study their laminar distribu-
tion. To solve this question, Tan and col-
leagues injected dissociated cells from the
interneuron progenitor pool directly into
the lateral ventricle of host embryos (Val-
canis and Tan, 2003). Using this protocol,
transplanted interneuron precursors at-
tach to the ventricular zone of the telen-
cephalon in random locations and infil-
trate the mantle, migrating eventually

toward the cortical plate. Although this method is hampered by
the fact that interneurons do not follow their normal route of
migration and therefore may fail to encounter important factors
required for their final laminar location, this study led to impor-
tant observations. Of note, they demonstrated that cells under-
going a final division in the host environment change their lam-
inar fate to adopt one in register with the cells being born at the
same time in the host (Valcanis and Tan, 2003). Thus, similar to
projection neurons, local cues influence the laminar fate of inter-
neuron precursors at the time of their final division.

Our study has extended these findings in a number of ways. In
particular, a more complex perspective of the mechanisms con-
trolling laminar acquisition by cortical interneurons is obtained
from the experiments in which we combined BrdU-labeled, het-
erochronic and isochronic homotypic transplants in the same
host environment. On one hand, we found that a large number of

Figure 6. The laminar distribution of cortical interneurons is independent of Reelin signaling. A, Schematic diagram of the
experimental design. GFP� and Dab1�/� donor pregnant mice received a single injection of BrdU at E12 or E15. Twelve hours
after BrdU injection, the MGE of Dab1�/� embryos was collected and dissociated and pooled together with cells obtained from
the MGE of GFP� embryos. Pooled donor MGE cells were then injected into the MGE of either E12.5 or E15.5 wild-type host
embryos. Host embryos were allowed to be born and analyzed at P14. B, C, Coronal section through the somatosensory cortex of
a transplanted P14 mouse showing the distribution of E12.5 wild-type (BrdU�/GFP�) and E12.5 Dab1�/� (BrdU�/GFP�)
MGE-derived interneurons after nuclear staining [4�,6�-diamidino-2-phenylindole dihydrochloride (DAPI)] and immunohisto-
chemistry for BrdU (red) and GFP (green). Arrows point to a wild-type (BrdU�/GFP�) cell; open arrowheads indicate a Dab1�/�

(BrdU�/GFP�) cell. D, Quantification of the distribution of wild-type E12.5 (yellow) and Dab1�/� E12.5 (red) interneurons in
the P14 cortex (average � SEM). E, F, Coronal section through the somatosensory cortex of a transplanted P14 mouse showing
the distribution of E15.5 wild-type (BrdU�/GFP�) and E15.5 Dab1�/� (BrdU�/GFP�) MGE-derived interneurons after nu-
clear staining (DAPI) and immunohistochemistry for BrdU (red) and GFP (green). Arrows point to wild-type (BrdU�/GFP�) cells;
open arrowheads indicate Dab1�/� (BrdU�/GFP�) cells. G, Quantification of the distribution of wild-type E15.5 (yellow) and
Dab1�/� E15.5 (red) interneurons in the P14 cortex (average � SEM). Scale bar, 200 �m.
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transplanted cells that divided last in the
donor environment did not modify their
laminar fate when transplanted to a
younger or older environment (Fig.
4D,G). These observations are in agree-
ment with the idea that embryonic pro-
genitors undergo cyclical changes in their
ability to respond to local cues, and there-
fore those progenitors transplanted later
in the cell cycle are already committed to
their normal fate (McConnell and Ka-
znowski, 1991; Valcanis and Tan, 2003).
This was particularly obvious for early-
born interneurons transplanted into an
older environment, which were still pri-
marily committed to deep layers of the
neocortex. In contrast, we also found that
many transplanted interneurons labeled
with the same BrdU pulse (and therefore
also late in their cell cycle) dramatically
changed their laminar fate when trans-
planted into a different environment. This
was especially noticeable for late-born in-
terneurons, which were primarily con-
fined to deep layers when transplanted
into a young environment (Fig. 4D). The
fact that not every interneuron trans-
planted late in the cell cycle retains its lam-
inar fate demonstrates that the host envi-
ronment can indeed influence the laminar
distribution of interneurons. This specific
observation extends the conclusion that
interneurons are specified with respect to
their future layer address as they start mi-
grating from the subpallium (Valcanis and
Tan, 2003) and suggests that either the
route of migration or the cortex itself can
additionally affect the final arrangement of
interneurons, independently of their birth
date. In conclusion, the subcortical envi-
ronment in which cortical interneurons
are born imprints them to adopt specific
laminar fates, but the cortical environment
that migrating interneurons encounter dur-
ing their migration also contributes to refine
their final position.

Layer acquisition by cortical interneurons does not directly
require Reelin
The distribution of both cortical projection neurons and interneu-
rons is severely disrupted in the absence of Reelin signaling. Despite
this alteration, the distribution of projection neurons and interneu-
rons is never uncoupled, suggesting that either interneurons also
depend on Reelin signaling or that they require a normal distribu-
tion of projection neurons to adopt their laminar position. Our ex-
periments provide several lines of evidence supporting this second
hypothesis. First, interneurons born at different times but trans-
planted simultaneously have the ability to segregate into different
layers of the cortex. This observation is incompatible with a mecha-
nism in which Reelin would directly determine the laminar location
of interneurons, or at least it would be necessary that interneurons
born at different times would respond differently to Reelin. Second,

projection neurons settle in the cortical plate before their synchro-
nically generated interneuron counterparts. This suggests that pro-
jection neurons do not wait for their interneuron counterparts to
simultaneously invade the cortex (Kriegstein and Noctor, 2004).
This conclusion is also compatible with the fact that migrating inter-
neurons enter the cortical plate from both superficial (marginal
zone) and deep (subplate, subventricular zone) positions (Polleux et
al., 2002; Ang et al., 2003; Tanaka et al., 2003; Hevner et al., 2004),
whereas cortical projection neurons invade the cortical plate in a
unidirectional migration from the ventricular zone. Third, Dab1�/�

interneurons transplanted in a wild-type environment can adopt a
normal laminar distribution, demonstrating that Reelin/Dab1 sig-
naling is not directly required for the acquisition of laminar fates by
cortical interneurons. Finally, when wild-type interneurons are
transplanted into a Dab1�/� environment, they fail to adopt their
normal laminar position. These results suggest that the distribution
of projection neurons and/or a normal radial glia organization is

Figure 7. The timing of cortical plate invasion is different for interneurons than for projection neurons. A, B, Coronal sections
through the somatosensory cortex of an E16.5 mouse embryo that received a single BrdU injection at E12, showing immunohis-
tochemistry for BrdU (A) and Lhx6 (B). The majority of BrdU� cells occupy the cortical plate (CP), although labeled cells are
scattered through all layers. In turn, Lhx6 staining is more abundant in the marginal zone (MZ), cortical plate, and subventricular
zone (SVZ). Numbers indicate bins for quantification. C–E, Confocal microscopic images of the marginal zone (MZ) (C), the CP (D),
and the SVZ (E) showing BrdU (red) and Lhx6 (green) staining at E16.5. The large majority of BrdU�/Lhx6� cells (arrows) were
found in the MZ (C) and SVZ (E). Only a small fraction of BrdU�/Lhx6� cells were located in the CP. F, Quantification of the
relative distribution of BrdU�/Lhx6� cells (yellow) and BrdU�/Lhx6� cells in the E16.5 cortex (average � SEM). **p � 0.01,
***p � 0.001 (� 2 test). G, H, Coronal section through the somatosensory cortex of a P0 mouse that received a single BrdU
injection at E15, showing immunohistochemistry for BrdU (G) and Lhx6 (H ). Although the majority of BrdU� cells occupy the top
portion of the CP, labeled cells are scattered through all layers. Lhx6 staining is also present in all layers, but high levels of staining
predominate in the bottom portion of the CP. I–K, Confocal microscopic images of the MZ (I ), the CP (J ), and the SVZ (K ) showing
BrdU (red) and Lhx6 (green) staining at P0. The large majority of BrdU�/Lhx6� cells (arrows) were found in the MZ (I ) and SVZ
(K ). Only a small fraction of BrdU�/Lhx6� cells were located in the CP. L, Quantification of the relative distribution of BrdU�/
Lhx6� cells (yellow) and BrdU�/Lhx6� cells in the P0 cortex (average � SEM). *p � 0.05, **p � 0.01, ***p � 0.001 (� 2

test). Scale bars: A, B, 150 �m; G, H, 100 �m; C–E, I–K, 40 �m.
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required for interneurons to distribute appropriately in the cortex.
These findings challenge recent experiments in which wild-type in-
terneurons were found to distribute normally when transplanted
into the lateral ventricle of Dab1 mutant embryos (Hammond et al.,
2006). Other than the obvious methodological differences that exist

between both experiments (transplantation
in the MGE versus transplantation in the lat-
eral ventricle), we cannot explain the origin
of this discrepancy. However, the conclusion
reached by Hammond et al. (2006) with this
experiment, i.e., that late-born interneurons
respond to Reelin to adopt their normal lam-
inar fate, seems arbitrary because, even in the
event that wild-type interneurons could allo-
cate normally in the cortex of Dab1 mutants
(which our results strongly contradict), this
would by no means demonstrate that inter-
neurons require Reelin for doing so. In con-
trast, our experiments in which Dab1�/� in-
terneurons were transplanted into a wild-
type environment clearly demonstrate that
both early- and late-born interneurons can
autonomously adopt a normal laminar dis-
tribution in the absence of Reelin/Dab1 sig-
naling. Moreover, in view of the evidence
summarized above, we also suggest that the
organization of projection neurons, which
depends on Reelin/Dab1 signaling, influ-
ences the final allocation of cortical
interneurons.

The molecular nature of the factors that
regulate the laminar distribution of cortical
interneurons remains unknown. Because
both fate determinants and local cues are im-
portant to specify the laminar fate of inter-
neurons, we favor a model in which inter-
neurons born at specific times during
development are committed to distinct lay-
ers of the cortex in response to cues provided
by projection neurons (Hammond et al.,
2001; Hevner et al., 2004). These cues, how-
ever, do not need to be homogeneously
present throughout the thickness of the cor-
tex but may emerge as cortical layers pro-
gressively differentiate, defining a temporal
window in which a specific cortical layer be-
comes particularly permissive for a popula-
tion of interneurons. Unraveling the molec-
ular nature of such signal(s) will greatly
contribute to our understanding of the
mechanisms controlling the formation of
laminar structures in the brain.
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Alcántara S, Ruiz M, D’Arcangelo G, Ezan F, de

Lecea L, Curran T, Sotelo C, Soriano E (1998)
Regional and cellular patterns of reelin mRNA
expression in the forebrain of the developing
and adult mouse. J Neurosci 18:7779 –7799.

Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR
(1997) Interneuron migration from basal
forebrain to neocortex: dependence on Dlx
genes. Science 278:474 – 476.

Ang Jr ES, Haydar TF, Gluncic V, Rakic P (2003)
Four-dimensional migratory coordinates of

GABAergic interneurons in the developing mouse cortex. J Neurosci
23:5805–5815.

Angevine JB, Sidman RL (1961) Autoradiographic study of cell migration
during histogenesis of cerebral cortex in the mouse. Nature 192:766 –768.

Butt SJ, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G

Figure 8. The laminar distribution of cortical interneurons correlates with the allocation of projection neurons. A, Schematic
diagram of the experimental design. GFP� donor and Dab1�/� host pregnant mice received a single injection of BrdU at E15.
Twelve hours after BrdU injection, the MGE of GFP� embryos was collected, dissociated, and then injected into the MGE of E15.5
Dab1�/? and Dab1�/� host embryos. Host embryos were allowed to be born and analyzed at P14. B, C, Coronal section through
the somatosensory cortex of a transplanted P14 wild-type mouse showing the distribution of E15.5 wild-type (BrdU�/GFP�,
see inset) MGE-derived interneurons and E15.5 host-derived neurons (BrdU�/GFP�) after nuclear staining [4�,6�-diamidino-
2-phenylindole dihydrochloride (DAPI)] and immunohistochemistry for BrdU (red) and GFP (green). Numbers indicate bins for
quantification. D, Quantification of the distribution of transplanted wild-type E15.5 interneurons in the P14 wild-type cortex
(average � SEM). E, F, Coronal section through the somatosensory cortex of a transplanted P14 Dab1�/� mouse showing the
distribution of E15.5 wild-type (BrdU�/GFP�, see inset) MGE-derived interneurons and E15.5 host-derived neurons (BrdU�/
GFP�) after nuclear staining (DAPI) and immunohistochemistry for BrdU (red) and GFP (green). G, Quantification of the distri-
bution of transplanted wild-type E15.5 interneurons in the P14 Dab1�/� cortex (average � SEM). H, I, Quantification of the
relative distribution of transplanted wild-type E15.5 interneurons (yellow) in relation to host (red) wild-type (H ) or Dab1�/� (I )
E15.5 neurons in the postnatal cortex (average � SEM). Scale bars: 200 �m (B, C, E, F ); 20 �m (insets in C, F ).
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